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Intultion

Try and find a plane that separates the classes in feature space.

If we cannot:

Not perfect separation?

Enrich and enlarge the feature space?



How to separate a feature space

A hyperplane in p dimensions is a flat affine subspace of
dimension p — 1.

In general the equation for a hyperplane has the form

Bo+ 1 X1+ BeXo+ ...+ B, X, =0



Separation by A Hyperplane




Best Hyperplane: Maximal Margin Classifier

Constrained optimization problem
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Non-separable Data

The data on the left are
not separable by a linear
boundary.
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Noisy Data




Soft Margin: Support Vector Classifier
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Soft Margin: Support Vector Classifier

p
maximize M subject to E ﬂ? =1, o -
/807619"'7/31)7617"'9671 9_1

yz‘(ﬂo + B1xi1 + Boxio + ...+ Bpxz-p) > M(1 _ Gi), 2

n
e; > 0, ZQSC,

1=1

| | | | |
-0.5 0.0 0.5 1.0 1.5 2.0 25

X,



Solver for Support Vector Classifier

It is intractable to solve the constraint problem, so we need to
formulate an unconstrainted problem as a solver.

1=1

n p
minimize max [0,1 — y; f(z;)] + A 2
Bo.B1,-.., Bp{z [ vif (@:) ;BJ}



Feature Expansion

Enlarge the space of features by including transformations;
e.g. X12, Xf’, X1Xo, X1X§,. ... Hence go from a
p-dimensional space to a M > p dimensional space.

Fit a support-vector classifier in the enlarged space.

This results in non-linear decision boundaries in the
original space.



Cubic Polynomials

A basis expansion of cubic
polynomials increases the
number of variables from 2
to9




Nonlinearities and Kernels

There is a more elegant and controlled way to introduce nonlinearities
in support-vector classifiers — through the use of kernels.

Kernels: Linear Kernels; Polynomial Kernels; Gaussian Kernels



Inner products and support vectors

Inner product:

The linear support vector classifier can be represented as

f(@)=Bo+ Y ailz,z;)
1=1



Nonlinearities and Kernels

There is a more elegant and controlled way to introduce nonlinearities
in support-vector classifiers — through the use of kernels.

Kernels: Linear Kernels; Polynomial Kernels; Gaussian Kernels



Nonlinearities and Kernels

It turns out that most of - -
the &; can be zero

f@)=Bo+ ) aylx, ;) CEN
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S is the support set of
indices i such that @; > 0 Lt




Radial Kernel

f(z) = Bot+)  &:K(z,x;)

i€S
o >
K(z;,zy) = exp(—y Z(«’% - -’Bz"j)z)-
i=1
The kernel is large when x
s close to x; Rl L dnesai



Multi-Class SVM

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versusAAll. Fit K different 2-class SVM
classifiers fip(x), k =1,..., K; each class versus

the rest. Classify z* to the class for which f(z*)
is largest.



Multi-Class SVM

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVO One versus One. Fit all (Iz{ ) pairwise classifiers

fke (). Classify * to the class that wins the most
pairwise competitions.



Support Vector vs Logistic Regression

When classes are (nearly) separable, SVM does better than LR.
So does LDA.

When not, LR (with ridge penalty) and SVM very similar.

If you wish to estimate probabilities, LR is the choice.

For nonlinear boundaries, kernel SVMs are popular. Can use kernels
with LR and LDA as well, but computations are more expensive.



Q&A



