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Unsupervised Learning vs Supervised Learning

Unsupervised learning is more subjective than supervised learning, as
there is no simple goal for the analysis, such as prediction of a response

It is often easier to obtain unlabeled data — from a lab instrument or a
computer — than labeled data, which can require human intervention.



The Goals of Unsupervised Learning

We discuss two methods:

Principal components analysis: a tool used for data visualization
or data pre-processing before supervised techniques are applied

Clustering: a broad class of methods for discovering unknown
subgroups in data.
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Principal Components Analysis (PCA)

PCA produces a low-dimensional representation of a dataset. It finds
a sequence of linear combinations of the variables that have maximal
variance, and are mutually uncorrelated.

Apart from producing derived variables for use in supervised
learning problems, PCA also serves as a tool for data visualization.



Principal Components Analysis (PCA)

The first principal component of a set of features is the normalized
linear combination of the features

Z1 =1 X1+¢uXo+ ...+ op1 Xy

that has the largest variance. By normalized, we mean that
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Principal Components Analysis (PCA)

21 (xi—X)? ) i
var(x) = — V ar(x4) ... Cov(xq,xp)
> 1 (xi=x)(yi—y) - Cov(Xp, X1) ... Var(x,) -
cov(x,y) = —

®, is the eigenvector corresponding to the largest eigenvalue

Do not forget to normalize @,



Clustering Methods

K-means clustering, we seek to partition the observations into a pre-
specified number of clusters.

Hierarchical clustering, we do not know in advance how many clusters
we want; in fact, we end up with a tree-like visual representation of the
observations



K-Means

Let Cq,...,Ck denote sets containing the indices of the
observations in each cluster. These sets satistfy two properties:

1. CtuCyU...UCkg ={1,...,n}. In other words, each
observation belongs to at least one of the K clusters.

2. C,, NCyr =0 for all k£ # k'. In other words, the clusters are
non-overlapping: no observation belongs to more than one
cluster.

For instance, if the ¢th observation is in the kth cluster, then
1 € Cy.



K-Means

The idea behind K-means clustering is that a good clustering is one for
which the within-cluster variation is as small as possible.

The problem is formulated as

K
inimize { Z WCV(Cy) }

k=1



K-Means

Typically use Euclidean distance to measure within-cluster variation

WCV(Cy) = S‘ S‘ (i — i)

zzeCk_y 1

The objective can be reformulated as

(K
minimize Z a: — X
C1,....Ckg < k— 51 S‘ ] ?/ ] >

..... i 20, j=1
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K-Means

Randomly assign a number, from 1 to K, to each of the
observations. These serve as initial cluster assignments for
the observations.

Iterate until the cluster assignments stop changing:

2.1 For each of the K clusters, compute the cluster centroid.
The kth cluster centroid is the vector of the p feature means
for the observations in the kth cluster.

2.2 Assign each observation to the cluster whose centroid is
closest (where closest is defined using Euclidean distance).



K-Means
Example

Iteration 1, Step 2a
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Hierarchical Clustering

K-means clustering requires us to pre-specify the number of clusters K.
This can be a disadvantage

Hierarchical clustering is an alternative approach which does not
require that we commit to a particular choice of K.



Hierarchical Clustering

Start with each point in its own cluster. Identify the closest two clusters
and merge them. Repeat until all points are in a single cluster.
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Hierarchical Clustering

How to compute the distance between two clusters?

Minimum distance

Maximum distance

Average distance



Hierarchical Clustering (Number of Clusters)

...............................




