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Multiple Hypothesis Testing

A single null hypothesis might look like H,: the expected blood
pressures of mice in the control and treatment groups are the same.

We will now consider testing m null hypotheses, Hy4,..., Hy,, Where
e.g. Hy; : the expected values of the jth biomarker among mice in
the control and treatment groups are equal.



A Quick Review of Hypothesis Testing

Hypothesis tests allow us to answer simple “yes-or-no” questions,
such as:

Is the true coefficient in a linear regression equal to zero?
Does the expected blood pressure among mice in the treatment

group equal the expected blood pressure among mice in the
control group?



Process of Hypothesis Testing

Hypothesis testing proceeds as follows:

1. Define the null and alternative hypotheses
2. Construct the test statistic (t-statistics, F-statistics)

3. Compute the p-value

4. Decide whether to reject the null hypothesis



Define the Null Hypotheses

We divide the world into null and alternative hypotheses.

The null hypothesis, H,, is the default state of belief about the
world. For instance:

The true coefficient equals zero.

There is no difference in the expected blood pressures.



Define the Alternative Hypotheses

The alternative hypothesis, H,, represents something different
and unexpected. For instance:

The true coefficient is non-zero.

There is a difference in the expected blood pressures.



Construct the Test Statistic

The test statistic summarizes the extent to which our data
are consistent with Hj.

Let fi; / ji. respectively denote the average blood pressure
for the n; / n. mice in the treatment and control groups.

To test Hy : uy = pe, we use a two-sample t-statistic




P-Value

The p-value is the probability of observing a test statistic at least

as extreme as the observed statistic, under the assumption that
H, is true.

A small p-value provides evidence against Hy .

A large p-value indicates that Hj is likely to be true.



Decide Whether to Reject Hy

A small p-value indicates that such a large value of the test
statistic is unlikely to occur under H,.

A small p-value provides evidence against Hy .

If the p-value is sufficiently small, then we will want to reject HO
(and, therefore, make a potential “discovery”).
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Type | Error Rate

The Type | error rate is the probability of making a Type | error.
We want to ensure a small Type | error rate.

If we only reject Hy when the p-value is less than a, then the Type
| error rate will be at most a.

So, we reject Hy, when the p-value falls below some a: often we
choose a to equal 0.05 or 0.01 or 0.001.



Multiple Testing

Now suppose that we wish to test m null hypotheses

Can we simply reject all null hypotheses for which the
corresponding p-value falls below (say) 0.017?

If we reject all null hypotheses for which the p-value falls below
0.01, then how many Type | errors will we make?



The Challenge of Multiple Testing

Suppose we test Hy4,..., Hy.py, all of which are true, and reject any
null hypothesis with a p-value below 0.01.

Then we expect to falsely reject approximately 0.01 x m null
hypotheses.

If m = 10,000, then we expect to falsely reject 100 null hypotheses
by chance!



The Family-Wise Error Rate

The family-wise error rate (FWER) is the probability of making at
least one Type | error when conducting m hypothesis tests.

FWER=Pr(V >1)

Hy is True Hj is False | Total
Reject Hy V S R

Do Not Reject Hy U %4 m— R
Total mo m — my m




The Family-Wise Error Rate

FWER = 1 — Pr(do not falsely reject any null hypotheses)
1—Pr (ﬂ;"’:l {do not falsely reject Hoj}).

If the tests are independent and all Hp; are true then

FWERzl—ﬁ(l—a)zl—(l—a)m.



The Family-Wise Error Rate
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Holm’s Method

Compute p-values, p1,...,Dpm, for the m null hypotheses
HO]_, c ooy HOm.

Order the m p-values so that pi;) < pp) < -+ < P

Define

L . . > a
— min< 7 : /. .
J - P(j) m+1—j




False Discovery Rate

Hy is True Hj is False | Total
Reject H V S R
Do Not Reject Hy U W m— R
Total mo m — my m

The FWER rate focuses on controlling Pr(V > 1), i.e., the
probability of falsely rejecting any null hypothesis.



False Discovery Rate

This is a tough ask when m is large! It will cause us to be
super conservative (i.e. to very rarely reject).

Instead, we can control the false discovery rate:

FDR — E (%) R (number of false I‘Q]GCthIlS)

total number of rejections



Benjamini-Hochberg Procedure to Control FDR
Specity q, the level at which to control the FDR.

Compute p-values p1, ..., pm for the null hypotheses
HO]_, « ooy Hom.

Order the p-values so that p;;) < pp) < ... < pay)-

Define L = max {j L Pi) < qj/m}.



Re-Sampling

So far, we have assumed that we want to test some null
hypothesis HO with some test statistic T, and that we know (or can
assume) the distribution of T under HO.

This allows us to compute the p-value.

What if this theoretical null distribution is unknown?



Two-Sample t-Test

Suppose we want to test Hy : E(X) = E(Y) versus
H,: E(X) # E(Y), using nx independent observations
from X and ny independent observations from Y.

The two-sample t-statistic takes the form

Lx — by

T = :
sv/1/nx + 1/ny




Two-Sample t-Test

If nx and ny are large, then T approximately follows a
N (0,1) distribution under Hy.

If nx and ny are small, then we don’t know the theoretical
null distribution of 7'.



Resampling

Compute the two-sample t-statistic 1" on the original data
T1yeeeyTpy a0A Y1,.. .y Yny -

For b=1,...,B (where B is a large number, like 1, 000):

Randomly shuffle the n, + ny observations.

Call the first nx shuffled observations z7,...,z; and call
the remaining observations y7, ...,y .

Compute a two-sample t-statistic on the shuffled data, and
call it T*°.



P-Value

The p-value is given by

B
2 b1 LT 2 7))
: |

Re-sampling approaches are useful if the theoretical null
distribution is unavailable, or requires stringent assumptions.



