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Survival Analysis

Survival analysis concerns a special kind of outcome variable: the 
time until an event occurs.

For example, suppose that we have conducted a five-year medical 
study, in which patients have been treated for cancer.

We would like to fit a model to predict patient survival time, using 
features such as baseline health measurements or type of treatment.



An Example

The applications of survival analysis extend far beyond medicine. For 
example, consider a company that wishes to model churn, the event 
when customers cancel subscription to a service.

The company might collect data on customers over some time 
period, in order to predict each customer's time to cancellation.
 

However, presumably not all customers will have cancelled their 
subscription by the end of this time period; for such customers, 
the time to cancellation is censored.
 



Survival and Censoring Times

For each individual, we suppose that there is a true failure or event 
time T, as well as a true censoring time C.

The survival time represents the time at which the event of 
interest occurs (such as death).

By contrast, the censoring is the time at which censoring occurs: 
for example, the time at which the patient drops out of the study 
or the study ends.



Survival and Censoring Times

We observe either the survival time T or else the censoring time C. 
Specifically, we observe the random variable

If the event occurs before censoring (i.e. T < C) then we observe 
the true survival time T; if censoring occurs before the event (T > 
C) then we observe the censoring time.



An Illustration

For patients 1 and 3, the event was observed. Patient 2 was alive 
when the study ended. Patient 4 dropped out of the study.



Censoring

Suppose that a number of patients drop out of a cancer study 
early because they are very sick.

An analysis that does not take into consideration the reason why 
the patients dropped out will likely overestimate the true average 
survival time.



Censoring

Similarly, suppose that males who are very sick are more likely to 
drop out of the study than females who are very sick. 

Then a comparison of male and female survival times may 
wrongly suggest that males survive longer than females.



The Survival Curve

The survival function (or curve) is defined as

This decreasing function quantifies the probability of surviving 
past time t.



The Survival Curve

Consider the BrainCancer dataset, which contains the survival 
times for patients with primary brain tumors undergoing 
treatment with stereotactic radiation methods.

The predictors are gtv (gross tumor volume, in cubic centimeters); 
sex (male or female); diagnosis (meningioma, LG glioma, HG 
glioma, or other); loc (the tumor location: either infratentorial or 
supratentorial); ki (Karnofsky index); and stereo (stereotactic 
method).



The Survival Curve

Only 53 of the 88 patients were still alive at the end of the study.

Suppose we'd like to estimate S(20) = Pr(T > 20), the probability 
that a patient survives for at least 20 months

We can simply compute the proportion of patients who are 
known to have survived past 20 months.



The Survival Curve

But is it a right estimation? 

17 of the 40 patients who did not survive to 20 months were 
actually censored

We cannot simply assume that they died, which may lead to an 
underestimation



The Kaplan-Meier Estimate

But is it a right estimation? 

17 of the 40 patients who did not survive to 20 months were 
actually censored

We cannot simply assume that they died, which may lead to an 
underestimation



The Kaplan-Meier Estimate



Log-Rank Test

We wish to compare 
the survival of males 
to that of females.
Shown are the 
Kaplan-Meier 
survival curves for 
the two groups.



Log-Rank Test

A two-sample t-test seems like an obvious choice: but the presence 
of censoring again creates a complication.

Therefore, we use log-rank test here



Log-Rank Test

d1 < d2 < …… < dK are the unique death times among the non-
censored patients, rk is the number of patients at risk at time dk, 
and qk is the number of patients who died at time dk.

We further define r1k and r2k to be the number of patients in 
groups 1 and 2, respectively, who are at risk at time dk.

Similarly, we define q1k and q2k to be the number of
patients in groups 1 and 2, respectively, who died at time
dk. Note that r1k + r2k = rk and q1k + q2k = qk.



Log-Rank Test

At each death time dk, we construct a 2x2 table of counts of
the form shown above.



Log Rank Test: the Main Idea

To test H0 : E(X) = 0 for some random variable X, one approach is to 
construct a test statistic of the form

where E(X) and Var(X) are the expectation and variance, respectively, 
of X under H0.



Log Rank Test: the Main Idea



Regression Models with a Survival Response

We wish to predict the true survival time T. Since the observed 
quantity Y = min(T;C) is positive and may have a long right tail, we 
might be tempted to fit a linear regression of log(Y ) on X. But 
censoring again creates a problem.

To overcome this difficulty, we instead make use of a sequential 
construction, similar to the idea used for the Kaplan-Meier survival 
curve.



Hazard Function

The hazard function or hazard rate, also known as the force of
mortality is formally defined as

where T is the (true) survival time.

It is the death rate in the instant after time t, given survival up to 
that time.



The Proportional Hazards Model

The proportional hazards assumption states that

where ℎ! 𝑡 ≤ 0 is an unspecified function, known as the baseline 
hazard. It is the hazard function for an individual with features 
𝑥"#, 𝑥"$, …



Proportional Hazards Model

The name proportional hazards arises from the fact that the hazard 
function for an individual with feature vector 𝑥"  is some unknown 
function ℎ! 𝑡 	times the factor.

Because the form of the baseline hazard is unknown, we cannot 
simply plug ℎ 𝑡 𝑥 	into the likelihood and then estimate 
𝛽#, 𝛽$, … 𝛽%	by maximum likelihood.



Proportional Hazards Model

Therefore, the probability that the ith observation is the one to fail at 
time 𝑦"  (as opposed to one of the other observations in the risk set) is



Relative Risk Functions at each Failure Time



Partial Likelihood

To estimate 𝛽, we simply maximize the partial likelihood with respect 
to 𝛽. As is the case for logistic regression, no closed-form solution is 
available, and so iterative algorithms are required.

For example, we can obtain p-values corresponding to particular null 
hypotheses (e.g., 𝐻!: 𝛽&), as well as estimated standard errors and 
confidence intervals associated with the coefficients.


