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Course Website
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What are on the course website:
 Lecture slides
 Lab material
 Contact Information

If you are interested in my research, feel free to contact me.



Notations (Supervised Learning)

Outcome Y (also called dependent variable, response, target) 

Vector/Matrix/Tensor predictor X (also called inputs, regressors, covariates, 
features, independent variables) 

Objectives: 
1. Accurately predict the outcomes of unseen test cases
2. Understand which inputs affect the outcome, and how
3. Assess the quality of our predictions and inferences 



Notations (Supervised Learning)

Outcome Y is Income

Task: Predict the income based on years of education, years of work, etc.

Predictors are years of education, years of work, etc. (Denoted by X) 

Modeling: 𝑌 = 𝑓 𝑋 + 𝜖



How to assess a model

Prediction Error (regression problems)

Prediction Accuracy (classification problems)

Model Variance

Interpretability



Prediction Error

𝐸![ 𝑌	 − 𝑔 𝑋;𝐷"#
$]

Given a training dataset 𝐷"# and a testing dataset 𝐷"%, and a prediction function 
learned on 𝐷"# (i.e., 𝑔(𝑋; 𝐷"#)), the prediction error can be defined as
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Testing Error: 𝑀𝑆𝐸"% =
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What is an ideal model?

Given X, there may be multiple outcomes Y due to different 𝜖.



What is an ideal model?

The ideal model characterizes the expectation of the outcome.

𝑓 𝑋 = 𝐸(𝑌|𝑋)

The ideal model here is also called the regression function.

If 𝑋 is a vector, 𝑋 = [𝑋&, 𝑋$]   

𝑓 𝑥 = 𝐸(𝑌|𝑋& = 𝑥&, 	𝑋$= 𝑥$)



Decompose the Prediction Error

𝐸! 𝑌	 − 𝑔 𝑋 $ = 𝐸! 	( 𝑌	 − 𝑓(𝑋)) + (𝑓(𝑋) 	− 𝑔 𝑋;𝐷 )$

𝐸! 	(𝜖 + 𝑒)$ = 𝐸! 	𝜖$ + 2𝜖𝑒 + 𝑒$ 	

𝐸! 	(𝜖 + 𝑒)$ = 𝐸! 	𝜖$] + 𝐸![2𝜖𝑒] + 𝐸![𝑒$ = 𝜖$ + 2𝜖𝐸! 𝑒 + 𝐸![𝑒$]

𝜖 𝑒

𝐸! 	(𝜖 + 𝑒)$ = 𝜖$ + 2𝜖𝐸! 𝑒 + 𝐸![𝑒$] irreducible error + reducible error



Decompose the Prediction Error

𝐸! 𝑌	 − 𝑔 𝑋 $ = 𝑏𝑖𝑎𝑠$ + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝜎$

Bias: 𝐸! 𝑔 𝑋;𝐷 	− 𝑓(𝑋)

Variance: E,[(E! 𝑔 𝑋;𝐷 	− 𝑔(𝑋; 𝐷))$]

Irreducible error: 𝜖	𝑜𝑟	𝜎

Depends on 
model complexity  



Regression Models (to Estimate g(X))

𝑔 𝑋 = 𝛽- + 𝛽&𝑋& +	…+ 𝛽.𝑋.	 (𝑋 = [𝑋&, … . , 𝑋.])  

Linear Models:



Regression Models (to Estimate g(X))

𝑔 𝑋 = 𝛽- + 𝛽&𝑋& + 𝛽$𝑋&$	 (𝑋 = [𝑋&])  

Quadratic Models:



Prediction Accuracy

Given a training dataset 𝐷"# and a testing dataset 𝐷"%, and a prediction function 
learned on 𝐷"# (i.e., 𝑔(𝑋; 𝐷"#)), the prediction accuracy can be defined as

𝐴𝑐𝑐 = 𝐸![𝐼(𝑌 = 𝑔 𝑋;𝐷"# ]

Training Accuracy: 𝐴𝑐𝑐"# =
&
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Testing Accuracy: 𝐴𝑐𝑐"% =
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Classification Models

The output of classification models are labels 

Logistic Regression Models

Support Vector Machine

K-Nearest Neighbors



Model Bias and Variance

Model Variance: The variance of parameters (but what is the standard?) 

Better metric: E,[(E! 𝑔 𝑋;𝐷 	− 𝑔(𝑋; 𝐷))$]

Model Bias 𝐸! 𝑔 𝑋;𝐷 	− 𝑓(𝑋)



Bias and Variance Trade-off

If a model is more complicated (e.g., with more parameters):

The bias is expected to be smaller

The variance is expected to be larger



Interpretability

The importance of each predictor?

Why a model makes a particular decision?

Example: Linear Model

𝐼𝑛𝑐𝑜𝑚𝑒 = 5×𝑌𝑒𝑎𝑟	𝑜𝑓	𝑤𝑜𝑟𝑘 + 4×𝑌𝑒𝑎𝑟	𝑜𝑓	𝐸𝑑𝑢 + 0.1×𝐻𝑒𝑖𝑔ℎ𝑡



Accuracy and Interpretability Trade-off

If a model is more complicated (e.g., with more parameters):

The accuracy may be higher (but may suffer from overfitting)

The interpretability may be worse (It is easy to interpret linear models)



Other Metrics (Binary Classification)

True Positive: TP False Positive: FP 

A + B: B is the prediction, and A means the correctness of the prediction

True Negative: TN False Negative: FN 

TP + FP = 1

TN + FN = 1



Other Metrics (Binary Classification)

How many positive cases are correctly predicted?

How many positive predictions are correct?



Goodfit, Underfit and Overfit

High bias High variance



Underfit and Overfit



Q & A


