## Linear Regression

Tianhang Zheng https://tianzheng4.github.io

#### Bias and Variance (Corrections)

$$E_D\left[\left(Y - g(X)\right)^2\right] = bias^2 + variance + \sigma^2$$

Bias: 
$$E_D[g(X;D)] - f(X)$$
  
Variance:  $E_D[(E_D[g(X;D)] - g(X;D))^2]$  Depends on  
model complexity

Irreducible error:  $\sigma$ 

#### Linear Regression

Linear Regression (LR) is one of the simplest methods for modeling

# Linear Regression assumes that the dependence of Y on $X_1, X_2, X_3$ ... is linear

In most cases, regression function is not linear (but interpretable)

## Simple Linear Regression

Linear Regression with a single predictor (Assume the ideal model is a linear function)

$$Y = \beta_0 + \beta_1 X + \epsilon$$

 $\beta_0$  is called intercept and  $\beta_1$  is called slope, which are two parameters.

 $\epsilon$  is the error term:  $\epsilon \sim N(0, \sigma^2)$ 

## Simple Linear Regression

The objective is to learn (estimate)  $\beta_0$  and  $\beta_1$ 

The estimates of  $\beta_0$  and  $\beta_1$  are denoted by  $\hat{\beta}_0$  and  $\hat{\beta}_1$ 

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

 $\hat{y}$  is an estimate (prediction) of outcome given X = x

 $e = y - \hat{y}$  is the residual

#### Least Squares Method

The least squares method is commonly used for estimating  $\beta_0$  and  $\beta_1$ 

Given a training dataset  $D_{tr} = \{(x_i, y_i)\}_{i=1}^N$ , the residual sum of squares (RSS) can be defined as

$$RSS = \sum_{i} e_{i}^{2} = (y_{i} - \hat{y}_{i})^{2}$$

#### Least Squares Method

$$\min_{\hat{\beta}_{0},\hat{\beta}_{1}} RSS = \sum_{i} e_{i}^{2} = \sum_{i} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})^{2}$$

Take the derivative and set the derivative as 0

$$\hat{\beta}_1 = \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2} \qquad \qquad \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

#### Analyzing Least Squares Method

Under the assumption of linear regression model (ideal model)

$$y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$

$$E_{\epsilon_i}(\hat{\beta}_1) = E_{\epsilon_i} \left[ \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2} \right] = E_{\epsilon_i} \left[ \frac{\sum_i (x_i - \overline{x})(\epsilon_i + \beta_1(x_i - \overline{x}))}{\sum_i (x_i - \overline{x})^2} \right]$$

#### Analyzing Least Squares Method (Unbiased)

$$E_{\epsilon_i}[\sum_i (x_i - \overline{x})] = 0$$

$$E_{\epsilon_{i}}\left[\frac{\sum_{i}(x_{i}-\overline{x})(\epsilon_{i}+\beta_{1}(x_{i}-\overline{x}))}{\sum_{i}(x_{i}-\overline{x})^{2}}\right]$$
  
=  $\frac{1}{\sum_{i}(x_{i}-\overline{x})^{2}}E_{\epsilon_{i}}\left[\sum_{i}(x_{i}-\overline{x})(\epsilon_{i}+\beta_{1}(x_{i}-\overline{x}))\right]$   
=  $\frac{\beta_{1}}{\sum_{i}(x_{i}-\overline{x})^{2}}E_{\epsilon_{i}}\left[\sum_{i}(x_{i}-\overline{x})^{2}\right] = \beta_{1}$  Why unbiased?

#### Analyzing Least Squares Method

The variance of  $\hat{\beta}_0$  and  $\hat{\beta}_1$  are

$$SE^{2}(\hat{\beta}_{1}) = \frac{\sigma^{2}}{\sum_{i}(x_{i}-\overline{x})^{2}} \qquad SE^{2}(\hat{\beta}_{0}) = \sigma^{2} \left[\frac{1}{n} + \frac{\overline{x}^{2}}{\sum_{i}(x_{i}-\overline{x})^{2}}\right]$$
$$\sigma^{2} = Var(\epsilon)$$

 $\hat{\beta} \sim N(\beta, SE^2(\hat{\beta}))$  Why Gaussian distribution?

#### Confidence Level

$$\hat{\beta} \sim N(\beta, SE^2(\hat{\beta}))$$
 means that  $\beta \sim N(\hat{\beta}, SE^2(\hat{\beta}))$ 

A 95% confidence interval is defined as a range of values with 95% probability, and the interval for the least square method is

$$[\hat{\beta} - 2SE(\hat{\beta}), \hat{\beta} + 2SE(\hat{\beta})]$$

There is 95% probability that this interval contains the true  $\beta$ 

*H*<sub>0</sub>: There is no relationship between *X* and *Y*?

 $H_1$ : There is some relationship between X and Y?

 $H_0: \beta_1 = 0 \qquad H_1: \beta_1 \neq 0$ 

For the hypothesis testing, we need a t-statistic (not z-statistic)

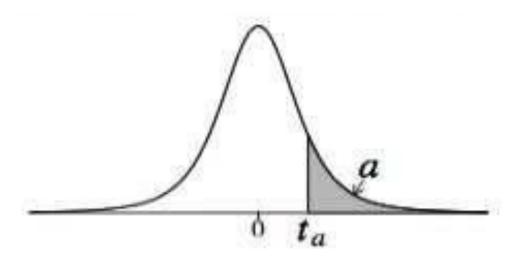
Because we do not know the true  $\sigma$ !

We can only estimate 
$$\sigma$$
 by  $\hat{\sigma}^2 = \frac{1}{|D|} \sum_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$ 

$$\widehat{SE}^{2}(\hat{\beta}_{1}) = \frac{\widehat{\sigma}^{2}}{\sum_{i}(x_{i} - \overline{x})^{2}}$$

We could compute a t-statistics by 
$$t = \frac{\hat{\beta}_1 - 0}{\widehat{SE}(\hat{\beta}_1)}$$

This variable should satisfy t-distribution with n-2 degrees



| df | Area to the right $(a)$ |       |       |       |       |       |       |       |        |
|----|-------------------------|-------|-------|-------|-------|-------|-------|-------|--------|
|    | 0.20                    | 0.15  | 0.10  | 0.05  | 0.025 | 0.01  | 0.005 | 0.001 | 0.0005 |
| 1  | 1.376                   | 1.963 | 3.078 | 6.314 | 12.71 | 31.82 | 63.66 | 318.3 | 636.6  |
| 2  | 1.061                   | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 22.33 | 31.60  |
| 3  | 0.978                   | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.21 | 12.92  |
| 4  | 0.941                   | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 | 8.610  |
| 5  | 0.920                   | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893 | 6.869  |
| 6  | 0.906                   | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 | 5.959  |
| 7  | 0.896                   | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.785 | 5.408  |
| 8  | 0.889                   | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 4.501 | 5.041  |
| 9  | 0.883                   | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.297 | 4.781  |

If |t| is very large, which means  $\alpha$  is very small

Then we could reject  $H_0$ 

This means there is some relationship between X and Y

#### Prediction Error

The residual sum of squares (RSS)

$$RSS = \sum_{i} e_{i}^{2} = (y_{i} - \hat{y}_{i})^{2}$$

The residual standard error (RSE)

$$RSE = \frac{1}{n-2}\sqrt{RSS}$$

#### **Prediction Error**

The residual sum of squares (RSS)

$$RSS = \sum_{i} e_i^2 = \sum (y_i - \hat{y}_i)^2$$

The residual standard error (RSE)

$$RSE = \sqrt{\frac{1}{n-2}RSS}$$



The proportion of the variance that can be explained by a model

$$R^2 = 1 - \frac{RSS}{TSS}$$

TSS is the total sum of squares (total variance of y)

$$TSS = \sum_{i} (y_i - \bar{y})^2$$



For linear regression, R-squared is the square of the correlation

$$R^2 = r^2$$

*r* is the correlation between *X* and *Y* 

$$r = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i} (x_i - \overline{x})^2} \sqrt{\sum_{i} (y_i - y)^2}}$$

#### Adjusted R-Squared

Adjusted 
$$R^2 = 1 - \frac{(1 - R^2)(N - 1)}{N - p - 1}$$
  
Where  $R^2$  Sample R-Squared

N Total Sample Size

p Number of independent variable

## Q & A