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Analyzing Least Squares Method (Unbiased)
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Why unbiased?



Analyzing Least Squares Method
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0𝛽 ∼ 𝑁(𝛽, 𝑆𝐸$ 0𝛽 )   Why Gaussian distribution?



Confidence Level

A 95% confidence interval is defined as a range of values with 95% 
probability, and the interval for the least square method is 

[ 0𝛽 − 2𝑆𝐸 0𝛽 , 0𝛽 + 2𝑆𝐸( 0𝛽)]

There is 95% probability that this interval contains the true 𝛽 

0𝛽 ∼ 𝑁(𝛽, 𝑆𝐸$ 0𝛽 ) means that	𝛽 ∼ 𝑁( 0𝛽, 𝑆𝐸$ 0𝛽 ) 



Multiple Linear Regression

𝑌 = 𝛽% + 𝛽#𝑋# + 𝛽$𝑋$ +⋯+ 𝛽+𝑋+ + 𝜖

Linear Regression with multiple predictors (Assume the ideal model is a 
linear function)

𝛽% is interpreted as the average effect of one unit increase in 𝑋"  on Y 



Parameter Estimation

The objective is to learn (estimate) 𝛽%, 𝛽#… , 𝛽+ 

The estimates of 𝛽%, 𝛽#… , 𝛽+	are denoted by 0𝛽%, 0𝛽#… , 0𝛽+

?𝑦 = 0𝛽% + 0𝛽#𝑥# +⋯+ 0𝛽#𝑥+

𝑒 = 𝑦 − ?𝑦 is the residual



Least Square Method (Solved by Software)
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Take the derivative and set it as 0 to estimate 0𝛽



Least Square Method (Solved by Matrix)

Estimation:

𝑏 = [ 0𝛽%, 0𝛽#… , 0𝛽/]



Visualization



Hypothesis Testing

𝐻%: 𝛽0 = 	0

We can use t-statistics 𝑡 =
0𝛽0 − 0
J𝑆𝐸( 0𝛽0)

K𝜷 = 0𝛽%, 0𝛽#, … , 0𝛽+ ∼ 𝑁 𝜷, 𝜎$(𝐗𝐭𝐗 )#)



P value

A p-value is the probability of obtaining test results at least as 
extreme as the result actually observed, under the assumption 
that the null hypothesis (𝐻%) is correct.

P-value = 𝑃[𝑇 > 𝑡 ]

If p-value is large, we tend to accept 𝐻%. Otherwise, we tend to 
reject it.



Hypothesis Testing

𝐻%: 𝛽# = 𝛽$ = ⋯ = 𝛽+ = 	0

We need to use F-statistics



Hypothesis Testing

𝑑𝑓# = 𝑝 𝑑𝑓$ = 𝑛 − 𝑝 − 1



Variable Selection 

Forward Selection

Backward Selection

Colinearity



Forward Selection

Begin with the null model — a model that contains an intercept but 
no predictors. 

Fit p simple linear regressions and add to the null model the variable 
that results in the lowest RSS. 

Add to that model the variable that results in the lowest RSS amongst 
all two-variable models. (Continue until some stopping rule is 
satisfied) 



Backward Selection

Start with all variables in the model. 

Remove the variable with the largest p-value — that is, the 
variable that is the least statistically significant. 

Continue to fit and remove until a stopping rule is reached



Colinearity

Two or more variables are exactly correlated. 

The parameters are not fixed and will be affected by small changes in 
the training data

Increase the difficulty for interpretation



Variable Interaction / Nonlinear Effects

Consider interaction between 𝑋# and 𝑋$. 

𝑌 = 𝛽% + 𝛽#𝑋# + 𝛽$𝑋$ + 𝛽/𝑋#𝑋$ + 𝜖

Consider nonlinear effects of 𝑋#

𝑌 = 𝛽% + 𝛽#𝑋# + 𝛽$𝑋#$ + 𝜖



Next

Friday: First Assignment---Linear Regression 

Next Week: Classification and Regression



Q & A


