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Model Selection and Regularization Methods

Subset Selection. We identify a subset of the p predictors that we 
believe to be related to the response. 

Shrinkage. We fit a model involving all p predictors, but the 
estimated coefficients are shrunken towards zero relative to the 
least squares estimates (Regularization)
 

Dimension Reduction. We project the p predictors into a M-
dimensional subspace, where M < p. This is achieved by computing 
M different linear combinations, or projections.



Subset Selection

Let 𝑀! denote the null model, which contains no predictors. 

For k = 1,2,...p:
 (a) Fit all models that contain exactly k predictors
      (b) Pick the best among these models and call it 𝑀". Here the
        best is defined as having the smallest RSS.

Select a single best model from among 𝑀!, . . . , 𝑀"  using cross-
validated prediction error or adjusted R2



Forward Stepwise Selection 

Let 𝑀! denote the null model, which contains no predictors. 

For k = 1,2,...p:
 (a) Consider all p − k models that augment one predictor
      (b) Pick the best among these models and call it 𝑀". Here the
        best is defined as having the smallest RSS.

Select a single best model from among 𝑀!, . . . , 𝑀"  using cross-
validated prediction error or adjusted R2



Forward Stepwise Selection (Greedy) 

Let 𝑀! denote the null model, which contains no predictors. 

For k = 1,2,...p:
 (a) Consider all p − k models that augment one predictor
      (b) Pick the best among these models and call it 𝑀". Here the
        best is defined as having the smallest RSS.

Select a single best model from among 𝑀!, . . . , 𝑀"  using cross-
validated prediction error or adjusted R2



Adjusted R2

Maximizing the adjusted 𝑅# is equivalent to minimizing $%%
&'(')

  



Shrinkage Methods 

Ridge regression and Lasso 

Fit a model containing all p predictors using a technique that constrains 
or regularizes the coefficient estimates, or equivalently, that shrinks 
the coefficient estimates towards zero. (reduce parameter variance)



Ridge regression

Ridge regression objective

𝜆 is a hyperparameter



Ridge regression

Before ridge regression, we usually need to standardize the predictors 

We usually use cross validation to set 𝜆 



Lasso

Ridge regression will include all p predictors in the final model 
(Disadvantage: No predictor selection) 

Objective of Lasso

If	𝜆 is sufficiently large, then Lasso 
will force some 𝛽 to exactly zero 
(equivalent to predictor selection)



Lasso vs Ridge Regression

Why Lasso can force some 𝛽 to exactly zero?



An example



Dimension Reduction

Use linear combinations of the predictors to construct new predictors

We can then fit the linear regression model



Dimension Reduction

Dimension reduction serves to constrain the estimated coefficients as  



Dimension Reduction

Dimension reduction serves to constrain the estimated coefficients as  



Principal Components Regression

The first principal component is that (normalized) linear combination of 
the variables with the largest variance. 
  

The second principal component has largest variance, subject to being 
uncorrelated with the first. 

Dimension reduction by Principal Components Analysis (PCA), and 
conduct linear regression on new predictors
  



Principal Components Analysis

𝑤()) is the eigenvector corresponding to the largest eigenvalue 

  

𝐗: 𝑛, 𝑝  not 𝑛, 𝑝 + 1  



Principal Components Analysis



Principal Components Regression

PCR identifies linear combinations, or directions, that best represent 
the predictors 

These directions are identified in an unsupervised way, since the 
response Y is not used to determine the principal component directions 

Drawback: no guarantee that the directions that best explain the 
predictors will be the best directions to use for predicting the response. 



Q & A


