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Moving Beyond Linearity

The truth is usually not linear.

It may be
e polynomials,
e step functions,
e splines,
e |ocal regression, and
e generalized additive models



Polynomial Regression

A

f(xo) = Bo + Przo + Baxk + B3zl + Bz

Since f (o) is a linear function of the Bg, can get a simple
expression for pointwise-variances Var[f(zo)] at any

value xg. In the figure we have computed the fit and
pointwise standard errors on a grid of values for z¢. We

A

show f(zo) £ 2 - se[f(zo)].




Logistic Regression

exp(Bo + Brxi + Bax? + ... + Baz?)
1+ exp(Bo + frzi + Bex? + ... + Bazl)

Pr(y; > 250|x;) =

To get confidence intervals, compute upper and lower
bounds on on the logit scale, and then invert to get on
probability scale.



Step Functions

Another way of creating transformations of a variable — cut
the variable into distinct regions.

Ci(X) =I(X < 35), Co(X)=1I(35<X <50),...,C5(X)=1I(X > 65)
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Piecewise Polynomials

Instead of a single polynomial in X over its whole domain, we can
rather use different polynomials in regions defined by knots.

y; = Bo1 + Pr1z; + .15’21113.';-2 + 33123? +¢€ ifx; <e;
1 Boz + Pr2z: + .32217.? + »’33227.:,;‘ +¢ ifz; >ec.



Piecewise Polynomials

Piecewise Cubic Continuous Piecewise Cubic
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Piecewise Polynomials

Cubic Spline Linear Spline
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Linear Splines

A linear spline with knots at &, k=1,...,K is a piecewise linear
polynomial continuous at each knot. We can represent this model as

yi = Bo + Bibi(z;) + Baba(z;) + - - - + Br+1br+1(zi) + €

(mi—ﬁk)+={ wle B> G

0 otherwise



Cubic Splines

yi = Bo + Bibi(x;) + Baba(zi) + - - - + Br+3bris(zi) + €

bi(z;)) = x;
by(zi) = i
by(z;) = =z
bris(z;)) = (x5 — fk)i, k=1,....K

(@i — &) = { (@ =8 if 2> &

0 otherwise



Natural Cubic Splines

A natural cubic spline extrapolates linearly beyond the boundary

knots, which adds 4 = 2X2 constraints
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Smoothing Splines

Objective for smoothing splines

mn

. o a 2 Y-
11111;161‘151129 E (yi — g(x;))* + / g"(t)

1=1

The second term is a roughness penalty and controls how wiggly g(x)
is. It is modulated by the tuning parameter.



Smoothing Splines
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Generalized Additive Models (GAM)

Allows for flexible nonlinearities in several variables, but retains the
additive structure of linear models.

yi = PBo + fi(zi1) + fo(zio) + -+ - + fo(zip) + €.



GAMSs for classification

f1(year)

log. ( p(X)

1 - p(X)

) = Bo+ f1(X1) + fo(X2) + - + Fy(Xp)
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Tree-based Methods

Tree-based methods can be used for regression and classification

Stratifying or segmenting the predictor space into a number of
simple regions.

Since the set of splitting rules used to segment the predictor space

can be summarized in a tree, these types of approaches are known
as decision-tree methods.



Pros and Cons

Tree-based methods are simple and useful for interpretation.

We will also discuss methods that can grow multiple trees which are
then combined to yield a single consensus prediction

Combining a large number of trees can often result in dramatic

improvements in prediction accuracy, at the expense of some loss
Interpretation.



Decision Tree Example
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Decision Tree Example
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Q&A



